第五十章 白马非马!此马非此马!(1/2)
对完答案以后,伊诚发现两个人的答案竟然完全一致。
也就是解题方法不同而已。
不出意外的话应该是两个满分。
这明显无法分出胜负,只能期望二试能稍微拉开差距了。
9点40分,二试正式开始。
二试题目可谓简单粗暴,总共就4道解答或者证明题。
分值也是超级暴力:
前面两道题每题40分,后面两道题每题50分,全卷满分180分。
有几个第一次参加高联的同学看到这样的分值,吓得连拿笔的手都在开始颤抖。
“妈耶……40分一题,随便就没了。”
“从来没有见过这么夸张的分数啊。”
……
伊诚深呼吸,镇定心神,翻开试卷。
“妈耶,这是个什么鬼?”
旁边传来一个少年的轻呼。
“考场上注意安静。”监考老师提醒到。
也不怪他发出感叹,因为跟他一样懵逼和难受的大有人在。
只不过其他人没有表现出来而已。
第一题,是这样的:
【马者,所以名形也;白者,所以名色也。名形者非名色也。故曰:白马非马。求马,黄黑马皆可致。求白马,黄黑马不可致。……故黄黑马一也,而可以应有马,而不可以应有白马,是白马之非马审矣。马者,无去取于色,故黄黑皆所以应。白马者有去取于色,黄黑马皆所以色去,故惟白马独可以应耳。无去者,非有去也。故曰:白马非马.马故有色,故有白马。使马无色,由马如己耳。安取白马?故白者,非马也。白马者,马与白也,白与马也。故曰:白马非马也。
(1)试证:白马非马(5分)
(2)如果有一匹马,它得为所有【不给自己找食物的马】寻找食物,试证:此马非此马,并举例说明“此马非此马”的存在情况(35分)】
伊诚不由得发出一声轻叹。
现在语文不好连数学题都做不了了。
这是关于古时候一个叫做公孙龙的诡辩家的典故:
有一次公孙龙过关,关吏说:“按照惯例,过关人可以,但是马不行。“公孙龙便说白马不是马,一番论证,关吏听了后连连点头,说:“你说的很有道理,请你为马匹付钱吧。“
现在这道题目,就是需要你用数学语言对文言文进行翻译,并且证明【白马非马】
可以说前面的话都是废话,要说有用也有点用,要说没用也没多大用。
只能说出题人是个狂热的古文化爱好者。
第一问明显是个送分题。
伊诚摇摇头,开始做出证明:
假设马为集合a,白马为元素b。
那么有b∈a
b≠a
也就是说,公孙龙得先定义清楚两者的关系才能对结果进行讨论。
如果按照第一种情况,b∈a,白马是马这个集合中的一个元素,那么白马是马,这就是一个伪命题。
如果按照第二种情况,b≠a,白马只是马这个集合中的一个元素,所以白马不等于马,这就是一个真命题。
第一问顺利证完,来到第二问。
伊诚呆立了三秒钟。
此马非此马。
不会吧?
这道题明显不该放在这里。
因为这是一个典型的罗素悖论题。
何为罗素悖论?
这是一个引发了数学界轩然大波的可怕故事,至今没有得到完美的解答:
德国数学家康托尔创立了著名的集合论,集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上“这一发现使数学家们为之陶醉。
1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。
罗素举了一个非常浅显易懂的例子来描述集合论中的这一漏洞:
在某个城市中有一位理发师,他只给【不自己刮脸】的人刮脸。
但是有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀。
那么这个理发师到底该不该给自己刮脸呢?】
这个悖论显而易见。
如果他给自己刮脸,那么他就违背了给自己刮脸的人这一原则。
如果他不给自己刮脸,那么他就得为【不自己刮脸的人】刮脸。
这就是矛盾的地方。
这个悖论引发了数学史上的第三次危机。
如果要高中生在这里进行证明就未免太难为人了。
所以伊诚认为这道题目不该出现在这里。
完蛋了。
第一道题目就这么难,这次高联明显是不要人活了啊。
“老师!”
正是这时,教室内一个学生举起了右手。
监考老师回过头来。
“怎么了?”
“这道题目出题有误。”那个学生很硬气的说到。
所有人抬起头来不约而同地看着她。
这个学生就是伊诚临桌的颜姿琦。
很明显她也发现试题超纲了。
“第一题第二问,明显是一个罗素悖论题,这道题目明显超纲,哪怕是现在最顶尖的数学家都无法完美解答罗素悖论,它不该出现在这里。”颜姿琦掷地有声地说到。
她是去年奥数金牌获得者,她是学校年级数学第一,她是本省的数学骄傲,她是国家未来重点培养的数学人才。
她有资格提出质疑。
监考老师走过来,看了看颜姿琦的考试牌。
然后他再仔细核对了一下试卷。
监考老师看了半分钟左右,
第1页完,继续看下一页